
 1

ECNU	 IMAPP	 WORKSHOP	 LAB	 FIVE:	 MODIS	 AOD	 Analysis	 	

Liam.Gumley@ssec.wisc.edu,	 June	 6,	 2011	

Objective	

The objective of this laboratory is to analyze 12 months of Aqua MODIS aerosol
optical depth (AOD) retrievals to create a plot of AOD vs. time over the city of
Shanghai. You will use the MODIS AOD retrievals created by the Direct
Broadcast Processing System at ECNU for input data. IDL will be used to:

1. read the MODIS AOD product files,
2. create global grids of AOD data,
3. plot a time series of AOD over Shanghai.

By completing this laboratory you will learn basic IDL programming skills for
data analysis and visualization.

MODIS	 data	 and	 IDL	 environment	

This lab requires the Aqua MODIS Aerosol Optical Depth product files
(*.mod04.hdf) from 2010145 to 2011149 that were created on the dbps server at
ECNU. A compressed archive of these files is available at

http://dbps.ecnu.edu.cn/data/workshop/day5/data/data.zip

You will also need the IDL program files available at

http://dbps.ecnu.edu.cn/data/workshop/day5/idl/idl.zip

Note: These files have already been downloaded and installed on your computer
for the laboratory session.

The following preferences should by selecting Windows > Preferences > IDL:

Startup file: E:\Workshop\Day5\idl\idl_startup.pro

Initial working directory: E:\Workshop\Day5\work

1.	 Read	 the	 AOD	 product	 files	 and	 create	 daily	 data	 files	

The first step in analyzing the MODIS AOD data is to read all the MOD04
product files. Since there are multiple passes from the satellite each day, there are
often multiple product files for each day in the time period 2010145 to 2011149.

 2

You will need to read each product file, extract the valid data, and save it to one
output file for each day.

Start by creating a new IDL program named read_modis.pro in the IDL Editor.
First, get the list of files to be analyzed by entering the following lines:

PRO READ_MODIS

COMPILE_OPT IDL2

directory = '../products/'
product = '*.mod04.hdf'

;- Get list of input files
list = file_search(directory + product)
help, list

END

Notes:

1. An IDL program begins with a PRO statement and ends with an END
statement.

2. COMPILE_OPT IDL2 sets IDL compiler options (recommended in every
IDL program).

3. String variables (text variables) in IDL are enclosed in single or double
quotes.

4. Comments in IDL start with a semi-colon.
5. The FILE_SEARCH function returns a list of files matching a pattern.
6. The HELP program prints the name, type, and size of a variable.

Save the program by typing Control-S, then compile and run the program by
typing the following lines in the command window:

IDL> .compile read_modis
IDL> read_modis

You should see the following output:

LIST STRING = Array[587]

BUT WHAT IF I MADE A MISTAKE!

Let’s say you entered the file search pattern in your program without single
quotes as shown below:

product = *.mod04.hdf

When you compile the program, you will get the following error:

IDL> .compile read_modis

product = *.mod04.hdf

 3

 ^
% Syntax error.
 At: e:\workshop\day5\work\read_modis.pro, Line 4
% 1 Compilation error(s) in module READ_MODIS.

This means you need to fix the program on line 4. When you have fixed the
offending line, you should return to the main program level by typing

RETALL

at the command line, and then compile your program again. You should also
type RETALL if your program crashes (i.e. stops unexpectedly) during execution.

IDL now has a list of 587 file names in an array named LIST. The next step is to
print the name of each file. Edit your program to include the highlighted lines
shown below:

PRO READ_MODIS

COMPILE_OPT IDL2

directory = '../products/'
product = '*.mod04.hdf'

;- Get list of input files
list = file_search(directory + product)
help, list

;- Loop over input files
for i = 0, n_elements(list) - 1 do begin

 ;- Get file name
 input_file = list[i]
 print, input_file

endfor

END

Notes:

1. The up and down arrow keys can be used to recall the command history.
2. A loop begins with a FOR statement and ends with an ENDFOR

statement.
3. The N_ELEMENTS function returns the number of elements in a variable.
4. Elements of an array are accessed in form array[index], where the index is

a zero-based scalar or vector.

Save, compile, and run the program. The names of all the files should be printed
(one name per line). Partial output is shown below:

a1.11148.0550.mod04.hdf
a1.11149.0454.mod04.hdf
a1.11149.0635.mod04.hdf

 4

Now you will read the AOD data from each file (the files are in HDF4 format).
Edit your program to include the highlighted lines shown below:

PRO READ_MODIS

COMPILE_OPT IDL2

directory = '../products/'
product = '*.mod04.hdf'
sdsname = 'Optical_Depth_Land_And_Ocean'
scale = 0.001

;- Get list of input files
list = file_search(directory + product)
help, list

;- Loop over input files
for i = 0, n_elements(list) - 1 do begin

 ;- Get file name
 input_file = list[i]
 print, input_file

 ;- Read the input file
 hdfid = hdf_sd_start(input_file)
 hdf_sd_varread, hdfid, 'Latitude', lat
 hdf_sd_varread, hdfid, 'Longitude', lon
 hdf_sd_varread, hdfid, sdsname, data
 hdf_sd_end, hdfid
 help, lat, lon, data

 ;- Apply scale factor
 data = data * scale

endfor

END

Notes:

1. The MODIS AOD product is stored in a ‘Scientific Data Set’ named
'Optical_Depth_Land_And_Ocean' in each MOD04 HDF file.

2. The HDF_SD_START function opens a HDF file and returns a file
identifier.

3. The HDF_SD_VARREAD function reads a scientific data set (SDS)
variable from an open HDF file.

4. The HDF_SD_END function closes a HDF file.
5. The AOD values in the HDF file are stored as scaled integers (x1000) to

save space.

Save, compile, and run the program. The name of each file, along with the name,
size, and type of the LAT, LON, and DATA arrays for each file will be printed.
Partial output is shown below:

 5

../products/a1.11148.0550.mod04.hdf
LAT FLOAT = Array[135, 425]
LON FLOAT = Array[135, 425]
DATA INT = Array[135, 425]
../products/a1.11149.0454.mod04.hdf
LAT FLOAT = Array[135, 465]
LON FLOAT = Array[135, 465]
DATA INT = Array[135, 465]
../products/a1.11149.0635.mod04.hdf
LAT FLOAT = Array[135, 221]
LON FLOAT = Array[135, 221]
DATA INT = Array[135, 221]

The next step is to find the data values that are valid (i.e., not missing values). In
the AOD retrievals, the missing value is -9.999, so you will search for data values
that are greater than zero. Then you will extract the valid latitude, longitude, and
AOD data values, and store them in a table.

Edit your program to include the highlighted lines shown below:

PRO READ_MODIS

COMPILE_OPT IDL2

directory = '../products/'
product = '*.mod04.hdf'
sdsname = 'Optical_Depth_Land_And_Ocean'
scale = 0.001

;- Get list of input files
list = file_search(directory + product)
help, list

;- Loop over input files
for i = 0, n_elements(list) - 1 do begin

 ;- Get input file name
 input_file = list[i]
 print, input_file

 ;- Read the input file
 hdfid = hdf_sd_start(input_file)
 hdf_sd_varread, hdfid, 'Latitude', lat
 hdf_sd_varread, hdfid, 'Longitude', lon
 hdf_sd_varread, hdfid, sdsname, data
 hdf_sd_end, hdfid

 ;- Apply scale factor
 data = data * scale

 ;- Find valid data values
 loc = where(data gt 0.0, count)
 print, count

 ;- Save valid data values
 if (count gt 0) then begin

 6

 table = fltarr(3, count)
 table[0, *] = lat[loc]
 table[1, *] = lon[loc]
 table[2, *] = data[loc]
 help, table
 endif

endfor

END

Notes:

1. The WHERE function returns an array of locations where a given
expression is true. In this case, it returns the locations (or indices) in
DATA where the data values are greater than zero. The COUNT
argument returns the number of array indices.

2. The code within the IF statement is executed if the given expression is
true.

3. The FLTARR function creates a new array, with dimensions [3, COUNT],
or 3 columns and COUNT rows. The array values are set to zero.

4. The array named TABLE is then filled with the valid data values; latitude
in the first column; longitude in the second column; and AOD in the third
column.

Save, compile, and run the program. The name of each input file, the number of
valid data values, and the name, type, and size of the output table will be
printed. Partial output is shown below:

../products/a1.11148.0550.mod04.hdf
 13874
TABLE FLOAT = Array[3, 13874]
../products/a1.11149.0454.mod04.hdf
 9241
TABLE FLOAT = Array[3, 9241]
../products/a1.11149.0635.mod04.hdf
 3645
TABLE FLOAT = Array[3, 3645]

The final task for this program is to write the output table of latitude, longitude,
and AOD values to an output file. A new output file will be created for each day
(e.g., 2011147). If there is more than one input file for a day, the data from each
input file will be written in sequence to the output file for that day.

Edit your program to include the highlighted lines shown below:

PRO READ_MODIS

COMPILE_OPT IDL2

directory = '../products/'
product = '*.mod04.hdf'
sdsname = 'Optical_Depth_Land_And_Ocean'
scale = 0.001

 7

;- Get list of input files
list = file_search(directory + product)
help, list

;- Set old file date
old_date = 'a1.99001'

;- Get output file unit
get_lun, lun

;- Loop over input files
for i = 0, n_elements(list) - 1 do begin

 ;- Get input file name
 input_file = list[i]
 print, input_file

 ;- Read the input file
 hdfid = hdf_sd_start(input_file)
 hdf_sd_varread, hdfid, 'Latitude', lat
 hdf_sd_varread, hdfid, 'Longitude', lon
 hdf_sd_varread, hdfid, sdsname, data
 hdf_sd_end, hdfid

 ;- Apply scale factor
 data = data * scale

 ;- Get file date (e.g., 'a1.11210')
 file_name = basename(input_file)
 date_length = strlen(old_date)
 new_date = strmid(file_name, 0, date_length)

 ;- Find valid data values
 loc = where(data gt 0.0, count)

 ;- Save valid data values
 if (count gt 0) then begin

 ;- Open a new output file if needed
 if (new_date ne old_date) then begin
 free_lun, lun
 output_file = new_date + '.dat'
 openw, lun, output_file, /get_lun
 old_date = new_date
 print, ' '
 print, 'Opened new output file', output_file
 endif

 ;- Save the valid data values in a table (lat, lon, data)
 table = fltarr(3, count)
 table[0, *] = lat[loc]
 table[1, *] = lon[loc]
 table[2, *] = data[loc]

 ;- Write the output file in binary format
 print, 'Writing data from ', input_file

 8

 writeu, lun, table

 endif

endfor

END

Notes:

1. The OLD_DATE variable stores the date for the last output file. It is
initialized to a value of ‘a1.99001’ so that a new output file will be opened
for the first AOD product table.

2. The GET_LUN procedure assigns a logical unit number to be used for
writing the output files.

3. The date for each input file is obtained from the input file name. The
BASENAME function returns the filename without the path information.
The STRLEN function returns the length of the OLD_DATE string
variable. The STRMID function returns the first 8 characters from the file
name, starting with the first character.

4. The NEW_DATE variable is compared with the OLD_DATE variable, and
if it does not match, a new output file must be opened. The FREE_LUN
procedure closes the current output file. The OPENW procedure opens the
new output file. The OLD_DATE variable is then set to the value of the
NEW_DATE variable.

5. The WRITEU procedure writes the table of latitude, longitude, and AOD
values to the output file. If more than one input file is found for a day,
then the output tables are written sequentially (in order) to the output file.

Save, compile, and run the program. Now the program prints a message very
time a new output file is opened. Partial output is shown below:

../products/a1.11148.0413.mod04.hdf
 12157
Opened new output file a1.11148.dat
TABLE FLOAT = Array[3, 12157]
../products/a1.11148.0550.mod04.hdf
 13874
TABLE FLOAT = Array[3, 13874]
../products/a1.11149.0454.mod04.hdf
 9241
Opened new output file a1.11149.dat
TABLE FLOAT = Array[3, 9241]
../products/a1.11149.0635.mod04.hdf
 3645
TABLE FLOAT = Array[3, 3645]

You should find that several hundred output files, with names like a1.11148.dat,
have been created in the current directory. The next task is to transform these
AOD observations into daily global gridded averages.

 9

2.	 Read	 the	 daily	 data	 files	 and	 create	 daily	 grid	 average	 files	

The next program you write will read the AOD data files, and create a global
average of AOD values on a 1x1 degree equal angle grid.

Create a new IDL program named grid_modis.pro in the IDL Editor, and enter
the following lines of code that will (a) get the list of files to be read, and (b) open
and read the contents of each data file:

PRO GRID_MODIS

COMPILE_OPT IDL2

;- Get list of input files
list = file_search('a1.*.dat')
help, list

;- Loop over input files
for index = 0, n_elements(list) - 1 do begin

 ;- Open input file and get number of rows
 input_file = list[index]
 print, input_file
 openr, lun, input_file, /get_lun
 result = fstat(lun)
 nrows = result.size / (4 * 3)

 ;- Read data table
 table = fltarr(3, nrows)
 readu, lun, table
 free_lun, lun

 ;- Extract, lat, lon, data values
 lat = table[0, *]
 lon = table[1, *]
 data = table[2, *]
 help, lat, lon, data

endfor

END

Notes:

1. The list of input file names is returned by the FILE_SEARCH function.
2. A loop over the list of input files is started with a FOR statement.
3. The size of each data file is not known in advance, so each file is opened

with the OPENR procedure, and file information is returned by the
FSTAT function. The variable RESULT.SIZE contains the size of the file in
bytes. To convert this size to the number of rows in the file, you divide by
the number of bytes per floating-point number (4) multiplied by the
number of columns in the file (3). The variable NROWS then contains the
number of rows in the file.

 10

4. A variable named TABLE is created to hold the data, and the data is read
from the input file by the READU procedure. The input file is closed by
the FREE_LUN procedure.

5. The values latitude, longitude, and AOD are extracted from the table into
individual arrays named LAT, LON, and DATA, respectively.

Now save, compile, and run the program. The name of each data file, and the
name, type, and size of the LAT, LON, and DATA arrays will be printed. Partial
output is shown below:

a1.11147.dat
LAT FLOAT = Array[1, 9487]
LON FLOAT = Array[1, 9487]
DATA FLOAT = Array[1, 9487]
a1.11148.dat
LAT FLOAT = Array[1, 26031]
LON FLOAT = Array[1, 26031]
DATA FLOAT = Array[1, 26031]
a1.11149.dat
LAT FLOAT = Array[1, 12886]
LON FLOAT = Array[1, 12886]
DATA FLOAT = Array[1, 12886]

Now you will create a global equal angle grid containing average values of AOD.
The grid will be at 1x1 degree resolution, and will have 360 columns (for 360
degrees of longitude from 180W to 180E) and 180 rows (for 180 degrees of
latitude from 90S to 90N).

A key concept in the design of this program is the use of one-dimensional indices
to access the elements of a two-dimensional array. Arrays in IDL are stored in
memory in column-major order (i.e., column 1 row 1, column 2 row 1, column 3
row 1, etc.), and the elements of the array can be accessed using 1D indices. For
example, if you had an array in IDL with 5 columns and 4 rows, then array index
16 would point to the second column on the fourth row, as shown in the figure
below.

Columns
Rows 0 1 2 3 4

 5 6 7 8 9
 10 11 12 13 14
 15 16 17 18 19

This gives you a convenient way to access the locations of the cells in the global
grid. Now edit your program to include the highlighted lines shown below:

PRO GRID_MODIS

COMPILE_OPT IDL2

;- Get list of input files
list = file_search('a1.*.dat')

 11

help, list

;- Create equal angle grid
;- (lower left corner of grid is at 180W, 90S, i.e. -180.0, -90.0)
resolution = 1.0
ncol = long(360.0 / resolution)
nrow = long(180.0 / resolution)
grid = fltarr(ncol, nrow)

;- Loop over input files
for index = 0, n_elements(list) - 1 do begin

 ;- Open input file and get number of rows
 input_file = list[index]
 print, input_file
 openr, lun, input_file, /get_lun
 result = fstat(lun)
 nrows = result.size / (4 * 3)

 ;- Read data table
 table = fltarr(3, nrows)
 readu, lun, table
 free_lun, lun

 ;- Extract, lat, lon, data values
 lat = table[0, *]
 lon = table[1, *]
 data = table[2, *]
 help, lat, lon, data

 ;- Get list of grid indices
 lonlat_to_index, lon, lat, resolution, grid_index

 ;- Reset the grid array
 grid[*] = -999.9

 ;- Loop over grid cells
 for cell_index = 0, n_elements(grid) - 1 do begin

 ;- Find the data points within this grid cell
 loc = where(grid_index eq cell_index, count)

 ;- Save the mean for this cell
 if (count gt 0) then begin
 mean = total(data[loc]) / count
 grid[cell_index] = mean
 print, cell_index, mean
 endif

 endfor

endfor

END

Notes:

 12

1. The number of columns and rows in the grid is computed from the
variable named RESOLUTION, which is the grid resolution in degrees.
Then the GRID array is created to hold the average AOD values.

2. The one-dimensional indices (or array locations) of the MODIS AOD
values in the global grid are computed by the LONLAT_TO_INDEX
procedure, and are stored in the array named GRID_INDEX.

3. The contents of the GRID array are set to -999.9 as a missing value flag.
4. A loop over all the cells in the global grid is started with a FOR statement.
5. For each grid cell, the WHERE function returns an array named LOC

which contains the locations in the GRID_INDEX array where the value
matches the index of the current grid cell. This is how you find the AOD
retrieval locations within each grid cell. The number of matches is
returned in the COUNT variable (it will be zero if there are no matches).

6. If AOD values are found within the current grid cell, then the mean AOD
value is computed from the sum of the AOD values (returned by the
TOTAL function) divided by the number of values. The mean value (or
average) is stored in the MEAN variable.

7. The mean value for the grid cell is then stored in the GRID array.

Save the changes to your program, then compile and run it. Partial output is
shown below:

a1.10146.dat
LAT FLOAT = Array[1, 8177]
LON FLOAT = Array[1, 8177]
DATA FLOAT = Array[1, 8177]
 36303 0.434750
 36304 0.408000
 36663 0.411667
 36664 0.278000
 36665 0.178722

Note that this program will now take several minutes to run, as it processes each
of the daily data files. After you have seen several of the daily files processed
successfully, you can stop the program by typing Control-C. Note that you will
need to enter RETALL at the command line before you compile or run the
program again.

Now that you have created a global grid for each day, you will need to save the
grids to disk for further analysis. It would also be helpful to visualize the grids to
make sure they look correct. Add the highlighted lines shown below to your
program:

PRO GRID_MODIS

COMPILE_OPT IDL2

;- Get list of input files
list = file_search('a1.*.dat')
help, list

 13

;- Create equal angle grid
;- (lower left corner of grid is at 180W, 90S, i.e. -180.0, -90.0)
resolution = 1.0
ncol = long(360.0 / resolution)
nrow = long(180.0 / resolution)
grid = fltarr(ncol, nrow)

;- Loop over input files
for index = 0, n_elements(list) - 1 do begin

 ;- Open input file and get number of rows
 input_file = list[index]
 print, input_file
 openr, lun, input_file, /get_lun
 result = fstat(lun)
 nrows = result.size / (4 * 3)

 ;- Read data table
 table = fltarr(3, nrows)
 readu, lun, table
 free_lun, lun

 ;- Extract, lat, lon, data values
 lat = table[0, *]
 lon = table[1, *]
 data = table[2, *]
 help, lat, lon, data

 ;- Get list of grid indices
 lonlat_to_index, lon, lat, resolution, grid_index

 ;- Reset the grid array
 grid[*] = -999.9

 ;- Loop over grid cells
 for cell_index = 0, n_elements(grid) - 1 do begin

 ;- Find the data points within this grid cell
 loc = where(grid_index eq cell_index, count)

 ;- Save the mean for this cell
 if (count gt 0) then begin
 mean = total(data[loc]) / count
 grid[cell_index] = mean
 print, cell_index, mean
 endif

 endfor

 ;- Display the grid
 map_set, 30, 130, /orthographic, /isotropic, title=input_file
 image = map_image(grid, x0, y0, compress=1)
 loadct, 39, /silent
 tv, bytscl(image, min=0.0, max=5.0), x0, y0
 map_continents

 ;- Save the output grid

 14

 output_file = strmid(input_file, 0, 8) + '.grd'
 print, 'Writing ' + output_file
 openw, lun, output_file, /get_lun
 writeu, lun, grid
 free_lun, lun

endfor

END

Notes:

1. The MAP_SET procedure creates a global orthographic map projection,
centered at 30N, 130E.

2. The MAP_IMAGE function is used to create a 2D image array which has
been resampled from the global grid to the orthographic map projection.

3. A rainbow color table is loaded by the LOADCT procedure.
4. The resampled image is displayed by the TV procedure, and is scaled over

the range 0-5 by the BYTSCL function.
5. Continental boundaries are plotted by the MAP_CONTINENTS

procedure.
6. A new output file is created for each day, with a name similar to

a1.10154.grd. The OPENW procedure is used to open each file, and the
WRITEU procedure is used to write the final in binary format. Each
output file contains a 360x180 array (360 columns and 180 rows) of 32-bit
floating point data, representing MODIS AOD averages. The missing
value -999.9 is used for grid cells where no AOD values are present.

You will find that several hundred global grid files, with names like
a1.10154.grd, have been created in your IDL work directory. The last
programming task is to create a time averaged plot of AOD over Shanghai.

3.	 Read	 the	 daily	 grid	 average	 files	 and	 create	 time	 series	 plot	

Now it is time to read the daily grid average AOD data files and create a time
series plot at a specific location.

Create a new IDL program named plot_modis.pro in the IDL Editor, and enter
the following lines of code that will (a) create a grid array, (b) get the list of grid
files to be read, (c) open and read the contents of each grid file, and (d) extract
that AOD average value at the specified latitude and longitude:

PRO PLOT_MODIS, LAT, LON

COMPILE_OPT IDL2

;- Create equal angle grid
;- (lower left corner of grid is at 180W, 90S, i.e. -180.0, -90.0)
resolution = 1.0
ncol = long(360.0 / resolution)
nrow = long(180.0 / resolution)

 15

grid = fltarr(ncol, nrow)

;- Get list of grid files
list = file_search('a1*.grd')
help, list

;- Create output arrays
data = fltarr(n_elements(list))
time = fltarr(n_elements(list))

;- Compute index of the required grid cell
lonlat_to_index, lon, lat, resolution, index
help, index

;- Loop over grid files
for i = 0, n_elements(list) - 1 do begin

 ;- Read this file
 input_file = list[i]
 openr, lun, input_file, /get_lun
 readu, lun, grid
 free_lun, lun

 ;- Get data for the desired grid cell
 data[i] = grid[index]

endfor

help, data

END

Notes:

1. The PROGRAM statement now lists two arguments named LAT and LON
for this procedure. This will allow you to enter the desired latitude and
longitude values on the command line.

2. A global grid array named GRID is created, given the grid resolution
defined by the variable names RESOLUTION.

3. A list of input files is returned by the FILE_SEARCH function in an array
named LIST.

4. Output arrays for data values and the corresponding time series values
are created by the FLTARR function, named DATA and TIME,
respectively.

5. The grid index corresponding to the specified latitude and longitude is
computed by the LONLAT_TO_INDEX procedure, and stored in a
variable named INDEX.

6. A loop over all the input grid files is started via a FOR statement.
7. Each input file is opened by calling the READ procedure, and the global

grid array is read by the READU procedure. The input file is closed by
calling the FREE_LUN procedure.

8. The AOD average value at the desired location is extracted, and stored in
the array named DATA.

 16

Save the program, and then compile and run it as shown below (31.23N, 121.47E
is the location of Shanghai):

IDL> plot_modis, 31.23, 121.47

The output from the program should appear as shown below:

LIST STRING = Array[323]
INDEX LONG = 43861
DATA FLOAT = Array[323]

Since you will be creating a time series plot, you will need to get the date for each
input file and convert it to a numeric value, which can then be used by the IDL
plotting procedure. Add the highlighted lines shown below to your program:

PRO PLOT_MODIS, LAT, LON

COMPILE_OPT IDL2

;- Create equal angle grid
;- (lower left corner of grid is at 180W, 90S, i.e. -180.0, -90.0)
resolution = 1.0
ncol = long(360.0 / resolution)
nrow = long(180.0 / resolution)
grid = fltarr(ncol, nrow)

;- Get list of grid files
list = file_search('a1*.grd')
help, list

;- Create output arrays
data = fltarr(n_elements(list))
time = fltarr(n_elements(list))

;- Compute index of the required grid cell
lonlat_to_index, lon, lat, resolution, index
help, index

;- Loop over grid files
for i = 0, n_elements(list) - 1 do begin

 ;- Read this file
 input_file = list[i]
 openr, lun, input_file, /get_lun
 readu, lun, grid
 free_lun, lun

 ;- Get data for the desired grid cell
 data[i] = grid[index]

 ;- Get year and day of year from filename
 year = long(strmid(input_file, 3, 2)) + 2000
 day_of_year = long(strmid(input_file, 5, 3))

 ;- Get month and day of month

 17

 ydn2md, year, day_of_year, month, day

 ;- Get Julian date
 time[i] = julday(month, day, year)

endfor

help, data
help, time

END

Notes:

1. The year and day of year (e.g., 2011, 120) are derived from the name of
each grid average file. The STRMID function extracts the last two digits of
the year, and the day of year, from the variable INPUT_FILE. The LONG
function converts the string data type to a 32-bit integer.

2. The YDN2MD function computes the month and day of month, given the
year and day of year.

3. The JULDAY function computes the Julian day from the month, day, and
year. This is necessary because IDL uses Julian day values to plot time
data.

Save your program, then compile and run it. Now the program will print the
name, type, and size of the TIME variable, as shown below:

IDL> plot_modis, 31.23, 121.47
LIST STRING = Array[323]
INDEX LONG = 43861
DATA FLOAT = Array[323]
TIME FLOAT = Array[323]

The final step in the AOD analysis is to create a 16-day average of the global
gridded data, and then plot it as a time series. Add the highlighted lines shown
below to your program:

PRO PLOT_MODIS, LAT, LON

COMPILE_OPT IDL2

;- Create equal angle grid
;- (lower left corner of grid is at 180W, 90S, i.e. -180.0, -90.0)
resolution = 1.0
ncol = long(360.0 / resolution)
nrow = long(180.0 / resolution)
grid = fltarr(ncol, nrow)

;- Get list of grid files
list = file_search('a1*.grd')
help, list

;- Create output arrays
data = fltarr(n_elements(list))
time = fltarr(n_elements(list))

 18

;- Compute index of the required grid cell
lonlat_to_index, lon, lat, resolution, index
help, index

;- Loop over grid files
for i = 0, n_elements(list) - 1 do begin

 ;- Read this file
 input_file = list[i]
 openr, lun, input_file, /get_lun
 readu, lun, grid
 free_lun, lun

 ;- Get data for the desired grid cell
 data[i] = grid[index]

 ;- Get year and day of year from filename
 year = long(strmid(input_file, 3, 2)) + 2000
 day_of_year = long(strmid(input_file, 5, 3))

 ;- Get month and day of month
 ydn2md, year, day_of_year, month, day

 ;- Get Julian date
 time[i] = julday(month, day, year)

endfor

help, data
help, time

;- Set missing values to NaN (not a number)
loc = where(data lt 0.0, count)
if (count gt 0) then data[loc] = !VALUES.F_NAN

;- Compute time series, smoothed over 16 days
smoothed_data = smooth(data, 16, /nan, /edge_truncate)

;- Load greyscale color table
loadct, 0

;- Plot the data
result = label_date(date_format=['%M %Y'])
plot, time, smoothed_data, $
 xrange=[min(time), max(time)], $
 xstyle=1, $
 psym=1, $
 color=0, background=255, $
 xtickunits='months', $
 xtickformat='label_date', $
 ytitle='Aerosol Optical Depth', $
 title='MODIS Time Series at' + string(lat, lon, format='(2f8.2)')

END

Notes:

 19

1. Missing data values in the gridded AOD data for are replaced with a
special floating point value known as ‘Not A Number’, or NaN. These
values will be filtered out in the remainder of the analysis when the IDL
smoothing and plotting tools are called.

2. A smoothed time series over 16 days (moving window) is computed by
the SMOOTH function.

3. A grey scale color table is loaded by calling LOADCT.
4. The formatting desired for the date labels on the time series x-axis are

established by calling the LABEL_DATE function.
5. The smoothed time series is displayed by calling the PLOT procedure,

with keyword meanings as follows:
a. XRANGE and XSTYLE set the x-axis range to the precise range of

the time series data,
b. PSYM sets the plotting symbol to a cross,
c. COLOR and BACKGROUND set the plotting and background

colors to black and white, respectively,
d. XTICKUNITS and XTICKFORMAT are used to tell the PLOT

procedure to display x-axis labels as months,
e. YTITLE and TITLE set the titles for the y-axis and the plot,

respectively.

Save the program, then compile and run it as shown. You should see a time
series plot of MODIS AOD for the city of Shanghai, like the figure below:

IDL> plot_modis, 31.23, 121.47

Try creating similar plots for Beijing (39.90N, 116.40E) and Seoul (37.56N,
126.97E).

END OF ECNU LAB FIVE

